
September 1989 UILU-ENG-89-2233

COORDINATED SCIENCE LABORATORY
College of Engineering

0

PATH ANALYSIS:
A METHOD
FOR ANALYZING
MESSAGE
COMMUNICATION
IN FAULTY
HYPERCUBES

_DTIC
Michael Paul Peercy ELECTIA.

0013 11989

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

89 10 31 157
" , ,-mi i ii mwII II "

UNCLASSIFIEDI SECURITY CLASSIFICATION OF THIS PAGE

REPORT OOCUMENTATION
PAGE

!a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3 "STRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

I UILU-ENG-89-2233 (CSG 110)
6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (If applicable)
* University of Illinois N/A Office of Naval Research

6. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Avenue 800 N Quincy

Urbana, IL 61801 Arlington VA 22217

Ba. NAME OF FUNDING/SPONSORING I 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable)
Office of Naval Research N 00014-88-K-0624

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

See. 7b ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (I0clude Security Classification)r PATH ANALYSIS: A METHOD FOR ANALYZING MESSAGE COMMUNICATION IN FAULTY HYPERCUBES

12. PERSONAL AUTHOR(S)
PEEFCY, Michael Paul

13a. TYPE OF REFORT 13b. TIME COVERED 1.DATE OF REPORT (Year, Moonth, Day) PAGE COUNT
Technical FROM TO.1__ TO . _ 1gRq _ntmhLr 22 60U 16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on revern if necessary and identify by block number)

FIELD GROUP SUBGROUP Circuit Switching and Packet-Switching Delay, Hypercube

Multiprocessor, Probabilistic Distributions, Reconfig. Strat

i !9 ABSTRACT (Continuo on reverse if necesary and identify by block number)

In this paper we present an analysis of ccmmunication in a hypercube multiprocessor
which can be applied to systems in various degraded conditions under failure. By charact-I erizing the links of the hypercube as a collection of overlapping paths, we develop Path
Analysis, a method to calculate traffic and delay on each individual link in either a
packet-switched or circuit-switched hypercube network. We can thus examine the degradation
from ideal ccmnunication performance due to different fault patterns and different reroute
strategies we may use to ccmpensate for faults. Path Analysis also can account for the
redistribution of tasks from faulty processors.

I,
20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 03 DTIC USERS UnclassifiedI 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Cde)Z2c. OFFICE SYMBOL

00 FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

, UNCLASSIFIED

PATH ANALYSIS: A METHOD FOR ANALYZING
MESSAGE COMMUNICATION IN FAULTY HYPERCUBES

BY

MICHAEL PAUL PEERCY

B.S., Purdue University, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois

I

I i

ABSTRACTI

This thesis presents an analysis of communication in a hypercube multiprocessor

3 which can be applied to systems in various degraded conditions under failure. By

characterizing the links of the hypercube as a collection of overlapping paths, Path

Analysis is developed. Path Analysis is a method to calculate traffic and delay on each

3 individual link in either a packet-switched or circuit-switched hypercube network. One

can thus examine the degradation from ideal communication performance due to dif-

ferent fault patterns and different reroute strategies which may be used to compensate for

3 faults. Path Analysis also can account for the redistribution of tasks from faulty proces-

sors.

T
I

3 Ac cesio For

NTIS GPA&I
DTIC TAB
Unannounced 0
Just Ioation

D stritution/
Availability Co4es

I Avail and/or-
,~~Dist Spea ll - °S c I1 ..

0

U

I Iv I

I

ACKNOWLEDGEMENTSI
i I wish to thank Professor Prith Banerjee for his ideas, leadership, and assistance in

3 the production of this thesis.

I
U
I
Ia

I

3

I
I
I

I

IVI
TABLE OF CONTENTSI

I CHAPTER PAGE

1 1. INTRODUCTION ... 1

2. REVIEW OF RELATED W ORK .. . 4

1 2.1. Review of Reconfiguration Strategies ... 5

2.2. Review of Reroute Strategies ... 6

i 3. THEORETICAL FRAMEWORK FOR PATH ANALYSIS 11

£ 3.1. Notations ... 11

3.2. Traffic Analysis ... 15

1 3.2.1. Example .. 17

3 3.3. Delay Analysis .. 19

3.4. Path Analysis ... 22

3.4. 1. Calculation of a() ... 22

1 3.4.2. Calculation of 13() .. 24

3 3.4.3. Calculation of)(/) .. 25

3.4.4. Example application of path analysis .. 29

3.5. Program Implementation of Path Analysis .. 30

3 3.6. Reconfiguration M odeling ... 31

4. COMPARISON OF PATH ANALYSIS WITH SIMULATION 34

I

I
* vi

I 5. RESULTS OF PATH ANALYSIS..................................42

3 6. CONCLUSiONS..50

REFERENCES..51

I
I
I
3
I
I
I
I
I
I
I
I
I
I
I

I vii

LIST OF TABLES

*TABLE PAGE

11. Comparison of Theoretical and Simulation Results.................................. 40

32. Success Rates for Various Reroute Strategies .. 42

I viiiU
LIST OF FIGURESI

I FIGURE PAGE

1 1. Four-Dimensional Hypercube (16 processing nodes) .. 13

3 2. Path Analysis Compared with Simulation:

Fault-Free Hypercube, Uniform D Istination Distribution 35

1 3. Path Analysis Compared with Simulation:

3 Fault-Free Hypercube, Sphere of Locality Destination Distribution 36

4. Path Analysis Compared with Simulation:

Four-Fault Hypercube, Uniform Destination Distribution 37

3 5. Path Analysis Compared with Simulation:

Four-Fault Hypercube, Sphere of Locality Destination Distribution 38

6. Path Analysis Results: Fault at Node 0000, Task Disappears 44

U 7. Path Analysis Results: Fault at Node 3000, Task Redistributed 45

3 8. Path Analysis Results: Fault at Link -000 ... 46

9. Path Analysis Results: Four-Fault Hypercube .. 47

I
I
IU

I

II CHAPTER 1.

I INTRODUCTION

I
Recent advances in technology have allowed the development of messace-passing

multiprocessors with large numbers of processors that are directly connected through

3 various topologies such as hypercubes, trees, and meshes [1,2]. These network systems

generally have a routing scheme dictating what path a message takes from its source,

through intermediate nodes, to its destination (or sink). We assume a deterministic rout-

3ing scheme; that is, for each source node and each sink node in the given topology, there

is a unique path which every message must take from that source to that sink.

Owing to the increased complexity of these multiprocessor systems, there is a large

3 probability of failures of one or more processors or links in the system [3]. Hence

researchers have worked on various fault tolerant network architectures [4,51.

We will call a fault a processor fault if it affects only the processing element of a

I node without damaging any communication paths through the node. A node fault is one

3 which destroys communication through the node as well. A linkfault does not harm the

processor on either end of it; it only renders the link between them useless. A fault des-

I troys the paths which use the faulty component; that is, the sources of those paths cannot

3 send messages to their respective destinations. A reroute strategy may be used to make a

new path around a faulty component.

I In this thesis we propose a powerful method to aialyze various types of networks

3 under faults. Although these means may be used to analyze, with more or less difficulty,

I

2

a number of different network topologies, we concentrate on the hypercube interconnect

topology with circuit-switched communication.

The first generation hypercubes used packet-switching communication [6,7, 8,9].

Current generation hypercubes use circuit-switching in an attempt to decrease the latency

of message transmission [10, 111. The analysis of traffic in a hypercube network does not

depend on the type of switching (packet or circuit). However, the formulation of accu-

rate models for delay is much more difficult in the case of circuit-switching, and although

packet-switched networks are thoroughly analyzed in the literature, there seems to be no

prior analysis of delay in circuit-switched computer networks.

We propose a novel and potent method for characterizing the message traffic on

each link of the network. We show the application of the traffic thus found to past

models of packet-switched circuits in order to find delay, and we use the traffic in an ori-

ginal analysis of delay assuming the network is circuit-switched.

The method we propose is called Path Analysis (PA). Essentially PA consists of

representing the hypercube topology as a collection of paths. These paths physically

coincide on the links of the hypercube. By characterizing, as generally as necessary, the

paths on a link 1. we can describe the traffic on I as the sum total effect from all of the

coincident paths. The traffic, or throughput, is how many messages must be transmitted

across ,ink I. When the effects of waiting for 1 and other links are taken into account,

the delay of a message on I can be described.

The thesis is presented as follows. Chapter 2 discusses related work in

reconfiguration and reroute strategies. Chapter 3 is a theoretical presentation of Path

I

I3
I Analysis. Chapter 4 describes a program written to exploit PA with ease and gives a

comparison between the PA algorithm's estimates of traffic and delay and results drawn

from simulation. Chapter 5 obtains results from PA program runs. Chapter 6 draws con-

I clusions and presents extensions on the Path Analysis idea.

I
I
I
I
II
I
I
1I
I
I
U

I

4

CHAPTER 2.

REVIEW OF RELATED WORK

A symmetric network is one which looks identical to every node in the network. In

symmetric networks we can see each link as identical, and the traffic we calculate for that

one link applies to all links. A fault-free hypercube is clearly a symmetric network, but

any fault in the hypercube links, processors, or nodes makes the network asymmetric.

Because of the difficulty of describing asymmetric networks, most analyses are of sym-

metric networks. Reed and Fujimoto [21 give one such analysis. From this work, we use

notation and vocabulary for our analysis.

Once a fault has occurred, we would like to be able to bypass the fault with minimal

degradation of performance. The value of a reconfiguration strategy is measured by how

little the performance is degraded. Our analysis is developed as a tool to measure the

effects of faults and reconfiguration strategies on optimum performance of the hyper-

cube.

Two issues that need to be addressed in faulty multiprocessors are (1)

reconfiguration, i.e., process remapping on nodes, and (2) rerouting of messages. We

now review some related work on both issues.

!'I
I I I I iI

I

I5
I 2.1. Review of Reconfiguration Strategies

3 If the fault in the hypercube is a link fault, no process remapping is required. How-

ever, if it is a node fault or processor fault, there is a need for reconfiguration. Several

strategies have been proposed.

3 lOne approach involves the use of spare nodes and links such that under failure the

faulty nodes and links are replaced by spares [12, 13, 14]. After reconfiguration, another

fault-free hypercube is obtained, and the analysis of this reconfiguration strategy

3 becomes trivial.

3 A second approach to reconfiguration after failure of some nodes involves the deter-

mination of the largest fault-free subcube in the faulty hypercube, and running the appli-

I cation on it [15, 16, 17,18]. The disadvantage of this approach is the waste of possibly

3 good processors. Again since the resultant network is still a hypercube (a symmetric net-

work), the analysis is straightforward.

I A third approach is the load redistribution of the work on the faulty processors to

3 the remaining fault-free processors. Numerous papers have addressed this problem in the

domain of loosely coupled distributed systems [19,20,21,22,23]. Specifically, for

I hypercubes, some theoretical work has been proposed in [24]. On a practical side, the

3 MOOSE operating system at Caltech [25] uses an object-oriented model to perform task

redistribution. Recently, Banerjee [26] proposed a software scheme using virtual proces-

sors to perform load distribution to n fault-free neighbors of a faulty node. This strategy

3 is quite general and can encompass the other strategies as well. We will use this strategy

to illustrate the capability of our Path Analysis method later in this thesis.I
I

6

2.2. Review of Reroute Strategies

Reroute strategies are designed to send messages around faults. They become very

important with respect to link faults, which destroy communication lines but not any

computational power. Also, after task redistribution due to a node fault, some useful

form of routing around the faulty node is necessary if the degraded hypercube is to meet

its highest possible performance. Numerous proposals and investigations have been

made regarding routing and broadcasting in faulty hypercubes [27,28,29]. Routing

schemes that are designed to avoid network congestion also can provide fault tolerant

rerouting [11].

If normal communication can not proceed due to a fault, the reroute algorithms

determine how messages should be rerouted around the fault. We will describe three

varieties of reroute strategies: adaptive, single-alternate, and table. We call a reroute

adaptive if it sends a message along a path, altering the path as it finds faults in it. We

developed the single-alternate strategy as follows: if a message fails to be routed suc-

cessfully by the standard routing strategy, the source sends the message from source to

sink along a single alternative path. Table routing strategies use an occasionally exe-

cuted algorithm to determine the best path between each source and sink, storing these in

a lookup table at every node.

First, we present the standard routing procedure which is the default of all our dis-

cussed reroutes when the cube is fault-free. This routing is called ecube [30], the most

popular routing strategy in hypercube systems today. In ecube the bit differences

between the source and destination of a path are resolved from low dimension to high.

I

1 7

U Ecube ensures the shortest path in a perfect cube and avoids deadlock. A problem with

ecube which we explore later is that, in a circuit-switched hypercube network, lower

dimensional links must wait for higher dimensional links to free up in order to make long

U paths. Although all links may have the same traffic on them, lower links have greater

* delay.

We examine two adaptive routing strategies. Chen and Shin [27] present a routing

algorithm which we call C&S adaptive later in this thesis. In this algorithm each mes-

3 sage carries a header which contains an ordered list of dimensions to be traversed and a

n -bit tag. The list is initialized to the order the dimensions would be traversed in the

ecube routing. At each node in the path, the links are tried in the order given in the list

until an unfaulty one is found. The good link is then taken and that dimension is struck

from the list. If all dimensions in the list put the path on faulty links, then a spare dimen-

sion is chosen from outside the list. The link in that dimension is taken, and the list is

apper ded by adding that dimension onto the end. The tag is used to mark dimensions

derived from entirely blocked lists or taken as spares so that a bouncing effect does not

* take place.

3 The hyperswitch routing strategy, developed by JPL for its hypercube, is designed

to avoid congestion as well as faults [11]. A message in the hyperswitch network uses a

channel history tag (CHT) to mark dimensions it has found to be unavailable (busy or

faulty). A message attempts to run along its ecube-determined path. If it reaches an una-

vailable link, it tries another link, backtracking if necessary, and modifies the CHT

accordingly. The result is that a subset of the possible minimum-length paths from

3 source to destination is tried quickly and efficiently. It must be stressed that the

I

8

hyperswitch network is designed to speed the routing of messages by avoiding the wait

on congested links; its primary purpose is not fault-tolerance, although it succeeds in

being a viable reroute method.

The single-alternate reroute strategies are worth examining because of their accept-

able handling of single faults in the hypercube and their simple implementation. In these

methods the ecube path is tried, and, if a fault is found, one alternate path is tried. The

single-alternate path should have the property of being completely disjoint from the

ecube path. If the alternate path fails, the message routing is unsuccessful. Two single

alternate reroutes we developed are high dimension first (highfirst) and reverse ecube

(reverse).

If the list of the dimensions to be taken in an ecube route are cyclically rotated, a

disjoint path is created (assuming more than one dimension in the list) [28]. Highfirst

selects an alternative path by first using the highest dimension bit differing source and

sink; the remaining dimensions are traversed in their low to high ecube order. The ease

of implementation of this method is clear when we recognize that only the source needs

to know that a reroute has occurred. The source tries the ecube path. If that path fails,

this fact is returned to the source. The source then sends the message to its highest 3
dimension neighbor along the dimensions which need to be traversed. That neighbor

then proceeds as though it were transmitting a standard ecube-routed message.

Another reroute method we have developed is called reverse. In the context of theI

single-alternate reroute, reverse can be described as follows. If the ecube path fails, we 3
can try to make a path by traversing the dimensions from high to low, exactly in reverse I

I

* 9

I of our definition of ecube. This is easy to implement because a single bit can be carried

3 in the message header to tell whether the message is proceeding forward or backward

through the dimensions. Each node along the path merely examines that bit to determine

I whether the message should exit along the lowest unresolved dimension or the highest.

3 The third type of reroute strategy we examine is table routing. In table routing each

node's routing processor holds a table indexed by message destination address. Each

I table location contains the dimension which should be traversed from the current node in

order to reach the destination. Some algorithm must be run which fills the table in each

node with the optimum set of paths for the hypercube.

I Banerjee [26] developed an optimal table-filling algorithm which is run in a central-

3 ized fashion, i.e., by the host. It is modeled from Dijkstra's algorithm for minimal paths

in general graphs. From this algorithm we proposed a distributed algorithm which could

be run by the processors of the hypercube without the host's intervention. Although both

3 the centralized and distributed table-filling algorithms find shortest paths, they do not

necessarily find the same path. The centralized version builds paths from source to desti-

nation while the distributed version builds paths from destination to source. We there-

3 fore consider these algorithms separately in our investigations. Irrespective of how the

tables are filled, whether by centralized or distributed system programs, the actual routing

becomes trivial. Any node that originates or passes along a message just checks the des-

3 tination address, looks up the output link, and sends the message out that link. The ran-

dom access memory (RAM) that is necessary for this table is approximately N by logN

in size, where N is the number of processors in the hypercube. Another bit per word

3 should be used to mark nodes as inaccessible, faulty, or reached. Another advantage

I

10

besides simplifying routing logic to table lookup is that a source knows immediately I
whether or not a destination can be reached (is accessible) or should be reached (is not 3
faulty) from its table. If we reserve a bit or bit pattern to identify the current node, a

message can know immediately whether or not it has reached its destination from the U
RAM lookup.

We have introduced a number of reroute methods of different types. We cannot,

however, analyze these methods with the techniques given in works on symmetric or

fault-free networks. Once a fault has been introduced, an asymmetry is produced.

Reroute strategies further complicate the matter by placing traffic which once used faulty

components onto unfaulty ones. Yet we wish to compare these methods in an analytical U
and fast way to determine which is best for our needs and our prediction of faults. We 3
propose the idea of Path Analysis to do this evaluation, which is the key contribution of

this thesis. I'I
I
I'I
I
I
I
I

I

I CHAPTER 3.

I THEORETICAL FRAMEWORK FOR PATH ANALYSIS

I
Through our discussion of reroute techniques, we have somewhat motivated the

t need for analysis methods for these techniques. Essentially we wish to examine absolute

and relative densities of traffic and lengths of delays on the various links of a degraded

hypercube. The tool we develop here to make this examination is Path Analysis. In PA

I we choose any link 1, we find all paths which use link 1, and then we quantitatively

3 describe the total effect of these paths to give traffic. The traffic on 1, given a little more

description of the paths on I and its adjacent links, can yield an approximation for the

I delay on 1.

1 3.1. Notations

First we should introduce our conventions and notations. Our hypercube is of

dimension n. Its nodes are addressed with the appropriate n-bit number, the links con-

I necting nodes which differ in exactly one bit. The dimension of a link is the bit which

differs between its endpoints. We will use the terms lower link and higher link to mean

one of lower or higher dimension. It is important, but not necessary, in our analysis to

view neighboring nodes as connected by two links, not only one. In recent hypercubes

3 [10] communication can occur both ways, that is, communication is bidirectional, on one

set of connections. As a result, we view this single set of connections as two links. We

should note that a fault anywhere within this set of connections will generally make both

3 links inoperable due to the interdependence of the two links' traffic.

I

12

As a result of seeing two links for every logical connection, we have M =n 2n links

total. We address a link with the node it exits, indicating with a hat the dimension of the

link, that is, the bit which is changed in traversing the link. For example, we give a

four-dimensional hypercube in Figure 1. In this figure, label A identifies link 0011 which

traverses the 0Yh dimension between nodes 0011 and 0010. Link 0016 crosses the same

gap, but in the opposite direction. Both links 001f and 0016 can be used at the same

time, and are considered separately in our analysis. As another example of link addresses

we label link 0000 as B.

We represent a path with the notation (s d), where s is the source of the path and d

is the destination. Notice that all the routing strategies we have discussed are entirely

deterministic, that is, given a particular degraded condition of the hypercube F, there is at

most one successfully taken order of links from s to d. This property is critical in PA.

Therefore, for a particular F, (s d) is equivalent to an ordered list of links [11 12 ... IA],

determined by F and the routing methods. For example, in Figure 1 ecube would route

(0011, 1000) from the lowest dimension to the highest as [001 f, 00f0, 6000].

We need to quantitatively model the paths on the links as numbers, simplifying

them in terms of how often they are used and how long they are used. Although more

general descriptions are possible, we choose to use the destination distribution model

given in [2] to represent the frequency of use of a path. Reed and Fujimoto define the

destination distance distribution 4D(k) as the probability that a message crosses k links.

They also define Reach (k) to be the number of destination nodes exactly k links away

from an arbitrary source in a symmetric network. We change the definition of (D(k)

slightly by dividing O(k) by Reach (k). The resulting destination distribution 'ik is the

I

i 13
I
I
I
I
I

I A 0011

Figure 1. Four-Dimensional Hypercube (16 processing nodes)

I
I
U
.. .I• .., i i I I I I I I I I

14

probability that an arbitrary message is going to a chosen destination distance k from the

source. The n -vector of these probabilities we call 41.

Useful examples from [2] describe c1(k) and W. Two types of destination distance

distributions are uniform and sphere of locality. The uniform distribution is the one in

which every destination has the same probability of receiving an arbitrary message. In

terms of 4(k), 'D(k)=Reach (k)/(2n - 1); in terms ofy, Nk=l/(2 n -1). A sphere of locality

distribution defines a distance r; some destination within r links of the source receives a

message with probability 0, and some destination farther than r links from the source

receives a message with the complementary probability 1-0. Here 0 is the probability

that a message is sent to a destination no more than distance r from the source, the desti-

nation distance distribution cJ(k) is the probability that a message is sent to a destination

exactly distance k from the source, and the destination distribution Nik is the probability

that a message is sent to a particular destination which happens to be distance k from the

source.

To further illustrate the difference between cD(k) and Nik, assume the four-

dimensional hypercube in Figure 1. 4tk, from the formula given above, is 1/15. This is

the probability that the source sends the message to each other node. In other words, if

node 0 sources a message, there is a 1/15 probability that the message is to node 2; there

is also a 1/15 probability that the message is to node 14; and so on. 4(k) classifies all

nodes a given distance k in one number, assuming each node in that class is selected uni-

formly once the class is selected. 0(l) is 4/15, (D(2) is 6/15, 0(3) is 4/15, and 4(4', the

probability of sending a message from node 0 to 15, is 1/15.

| l l I II

I

I 15

I The reason we use V rather than 4(k) in our analysis is that the former is more use-

ful to measure traffic on links. If we say that each node sources one unit of messages to

the network, it sources yk units to each destination a distance k away. The sum of Vk

i over all destinations is unity, and multiplying xVk by the total output of a source gives the

traffic along each path (s d), where d is distance k from s. It is important to note that 4"

is determined assuming a symmetric, that is, fault-free, hypercube. This is a valuable

I assumption, since application programs on the system are written under the same

assumption. In our analysis we must map this V onto the degraded hypercube links. We

use the term distance of a path (s d) to describe the number of bits different between s

I and d (the Hamming distance). The length of a path is the number of links which are

actually traversed by a message from s to d in configuration F. The length is always

greater than or equal to the Hamming distance.I
3.2. Traffic Analysis

I We now use the above quantification of destination distribution in an analysis of

traffic on each link in a possibly degraded hypercube. The traffic, or throughput, on a

link is a measure of how many messages cross the link in one time unit. Throughout this

thesis, we use as our basic time unit the mean time of actual message transmission, noi

including path setup time.

u For each link I we define a vector v(1) with n components, where n is the number

of dimensions as well as the maximum distance in the hypercube. Component k of the

vector v(1) corresponds to the number of paths on I which are of distance k. We will

describe later how v can be derived. We will give an analytical paradigm in the case of

I

16

single failures, and we will give an algorithm to find v in the case of more complicated

configurations of faulty hypercubes.

The relative traffic on 1, t(l), is equal to the dot product of v(l) and XV in units of

total messages output by one node. The arrival rate of messages, or absolute traffic, on 1,

X(I), is found by multiplying the traffic t (l) by a factor X*, the messages per time unit

sourced by one processor.

It is interesting to note that traffic here is composed primarily of two components, 14

and v(l). W, describing the selection of message destination, is a function of the applica-

tion program. v(l), on the other hand, is exclusively a function of hypercube

configuration. The product of these two vectors gives us traffic.

In Kleinrock [311 an analytical method is given which finds traffic t(l) on each link

1 from the routing matrix; element (1, 1') of the routing matrix is the probability of going

from link I to link 1'. Path Analysis differs from this approach in that, due to the possi-

bly degraded condition of the network, we do not know the routing matrix. We find the

routing matrix from the traffic, after the traffic is derived from paths.

First we define N(1) by expanding the vector v(1). N(1) is an M by n matrix, where

M is the number of links in the hypercube. Element (1', k) in N(I) is the number of

paths of distance k which cross link I' immediately after crossing link I. Multiplying

N(1) by V gives the M-vector s (l). The scalar measurement of traffic t(l) is closely

related to s (I). t (I) is the sum of the elements of s (1) plus the traffic from those paths

for which 1 is the last link traversed. Thus r (1)=s (1)It (I) is the routing vector for link 1:

I

17

Icomponent 1' of r (I) gives the probability that an arbitrary message on I has I' as its next

link. The M by M matrix R is formed row by row from r (1).

R is the routing matrix for the hypercube. Note that R has zeros along the diagonal

since it is impossible for a message to have as its next link its current link. The sum of

3 Ithe elements in row 1 of R (r (1)) is a number whose difference from unity is the proba-

g bility that I is the terminating link of a message's path.

3.2.1. Example

As an example of the above calculations, we will derive v(l), t (1), s (1), and R for a

fault-free four-dimensional hypercube. For ease of calculation we assume V to be uni-

form. Also, since all links of a given dimension are identical in a perfect cube, we let I

represent not a link address, but rather a dimension. We characterize each links by its

dimension and do our analysis relative to this characterization.

Along with x, we give v(l) for a perfect cube as derived later in this thesis (there

called c(1)).

1 1/15
3 1/15
3 V= 1/15
I 1 1/15

I Multiplying these two yields t(l) = v(l) -= 8/15. This is the total traffic on each link

3 of a perfect four-dimensional hypercube under ecube routing.

Now we give the simplified matrices N(1). They are simplified because we are

I characterizing I by its dimension rather than its address. Thus, where N(/) is generally a

3 64 by 4 matrix, we make it a 4 by 4. Remember that element (1' ,k) of N(I) is the number

I

18

of paths of length k crossing link I' immediately after crossing link 1. (In this example,

it is the number of paths of length k crossing a link of dimension 1' immediately after

crossing a link of dimension 1.)

[0 000 000 0 0 0 00 0 00 0
N()=0 1 21 N) 0 0 00 N() 0 000 N) 0 00 0

N(0)= N(1)= 0 1 2 1 N(2)=0 0 00 N(3)= 0 0 0 0
[0 10 0 0 11 0 0 12 1 0 00 0

N(3) = 0 because no paths on a third dimension link continue to another link.

We multiply N(l) by q' to get s (I).

0 0 0 01
4/15 0 001
2/15 s(1)= 4/15 s(2)= s(3)= 0
1/15 2/15 4

Dividing each s(1) by t(1) (from above, 8/15 for all I) to get r(1), we form the matrix R

with row 1 equal to r(O)T, row 2 equal to r(1)T, and so on.

0 1/2 1/4 1/8
0 0 1/2 1/4

R= 0 0 0 1/2
0 0 0 011

We can verify with a simple probability analysis that this is indeed the routing

matrix for the perfect four-dimensional hypercube. If we view each bit as having a 1/2

chance of being changed in a particular route, element (1,1') in R is the probability that 1'

is the next highest bit after I which is changed in the route. The result is that the number

I-I' is chosen from a binomial distribution.

The above example is greatly simplified compared to the general case. But the

traffic and routing constructs we have developed apply to any arbitrary faulty condition I
I

I

1 19

I of the hypercube. We now use these traffic and routing matrices to perform a delay

I analysis for the hypercube in its arbitrarily faulty state.

33.3. Delay Analysis

To begin our section on delay, we briefly discuss the analysis for delay in a packet-

Iswitched network as presented in [311. This analysis is made under the assumptions of

exponential message arrival with mean frequency X(I) and exponential message service

time with mean iT identical on all links. Given the X(l) as we calculated in the preceding

1 section, the delay on link 1 is, from [31],

w (1) = (
y

Since here we assume packet-switching, the total delay for the transmission of a message

is the sum of the delays of all the links the message traverses. That is, on a path (s d) the

total delay for a message is

T(s d) = l)

5 Now we will derive the expressions for delay assuming a circuit-switched network.

As mentioned before, delay analysis of circuit-switched networks is not popular in the

literature. The difficulty in analysis of circuit-switching over packet-switching is in

quantifying the holding of a link while waiting for a later link to free up. Starting with

the most general terms, we have three random variables for link 1: y is the transmission

time, the time the message is actually being sent; x is the service time, the time the mes-

3sage is being sent plus the time it must hold to await the freeing of a later link; w is the

response time, the delay, the sending time plus the holding time plus the time waiting for

I

20

1 itself. Let f, (u) be the probability density function (pdf) of x, fy (u) be the pdf of y,

and f, (u) be the pdf of w.

We use the mixture distribution [32] to reconcile these three varieties of random

variables over the many links. Mixture distributions are of the form

F (u) = riFi(u,

where the sum of the m numbers ri is 1. Our service time x is one of a number of

values, each with a certain probability. If link ' is the terminating link for the message,

then the service time on 1 for the message is simply x (1)=y. If, on the other hand, the

message proceeds from 1 to 1', the service time on I is equal to the delay on 1',

x (1)=w (1'). That is, the time 1 is servicing the message is equal to the time the message

must wait for service from I' plus the actual service on 1'. We have already developed

R(1,1') as the routing matrix for the network. We use these probabilities to determine

fX((Uu I - R(I ,l'))f (u) + R (If (u)

Let x and w be the obvious M -vectors. Let 5T be the mean message transmission

time. Let y be the M -vector with all components equal to 5-, with the inherent assump-

tion that all links and messages are identical in this regard. In the language of the

matrices we have created,

x = (I-R)y + Rw =y + R(w-y) (1)

This expression for x is a function of y and w. y is a random vector of arbitrary distri-

bution. w is a random vector dependent on x.

I 21

I We must make some simplifying assumptions to come up with a reasonable expres-

sion for w. One of these assumptions is that message arrival on a link is exponential.

The other assumption is that message service time is exponential. When we assume

these two facts, we can examine average service times only, without requiring discovery

of service time distributions. For an M/M/1 queue, the average delay iW is related to the

average service time . and the average arrival frequency X through the expression

!1
For our approximation of delay, w, we have the M -function

This w we put into Equation (1), and we iterate, from x =, to find the fixed point

for x. Calculating w from this x gives us the delay, the vector we are seeking.

The delay for a message is found very easily from w. Since a link is held for the

duration of the transmission of a message across it, the delay of a message is equal to the

3delay of the first link it uses. If I is the first link in a path (s d), then the average delay

for a message taking (s d) is w (1).

This analysis needs only one set of inputs to drive it. Only one set of parameters

Icomes from the degraded hypercube and reroute methods. These parameters are the vec-

I tors v(1) and the matrices N(I), for each 1. We need to have a way to derive v and N. In

the following section we introduce an intuitive analytical method to obtain the numbers

I of paths on each link. Then we present an easily usable computational method to find v

3 and N.

I

22

3.4. Path Analysis

We continue the theoretical section with a discussion of the analytic determination

of the numbers of paths of length k, the vector v. In the next section we give an algo-

rithm to determine these numbers quickly for use in the formula derived above.

In deterministic routing procedures, certain rules apply to the paths which cross a

link I. By recognizing and following these rules, we can determine exactly what paths

go on each link, and thus determine v(l). Recall that v(l)k is the number of paths of

length k which cross I. We can break v into three terms: ax, 03, and ^,. ot(l) is the vector

of paths which are on 1 in a fault-free cube. 3(I) is the number of paths which are

removed from 1 due to a fault. 7(l) is the number of paths which are put on I due to

rerouting the failed paths. Thus we have

v(/) = at(1) - P3(1) + 7(l)

3.4.1. Calculation of a(l)

In order to determine a(l), the vector of paths which are on 1 due to ecube in a

fault-free hypercube, we must thoroughly analyze the standard ecube routing. Ecube

routing dictates that the bit differences from source to sink are resolved from right to left.

If (is along the mth dimension, then all bits to the right of m have been resolved, and all

bits to the left of m have not been resolved. The mlh bit of the address is currently being

resolved on 1. In useful notation, let us look at the bits of 1. Let t signify an arbitrary bit

of 1 (context tells us which bit). The address of 1 is the node the link exits from; the

dimension that I traverses is identified in our notation by placing a hat over that bit. Let

23

i u be an unrestricted bit in the source or destination, a bit which can be either 0 or 1. We

call u a free or unbound bit.

I = t..tt .. t
S t t. . tI).AU

d = u. .,ut.. t

5Since we have n-l-m bits to the left of m which are unknown in the destination

and m bits to the right of m which are unknown in the source, there are a total of n-1

bits which can vary in the path (s d). 2m different sources and 2n-1-m different destina-

I tions make 2n-1 different paths which cross link I in a perfect ecube-routed hypercube,

regardless of which 1 we choose.

Similarly we can describe exactly the number of paths of length k which cross I.

3 There are n-I bits in (s d) which determine the distance between s and d. We already

know there is one bit different between s and d, the m th dimension, which link I

traverses. Each other bit which is different is one more dimension of difference between

3 s and d. Therefore, the number of paths of length k crossing 1 is the number of ways we

£ can choose k-i bits from n-I bits; we call this number in the case of ecube routing in a

perfect hypercube cc(l)k where

calRk = -I I(~ k-11

Here we have clear demonstration of the network symmetry that ecube provides.

1 Every link has exactly the same cross section of traffic by path distance as every other

3 link.

I
I

24

3.4.2. Calculation of P()

The vector 0 arises from the fact that, in a faulty cube, a certain set of paths is

unroutable using ecube. If a path from this set crosses 1, then, without a reroute strategy,

1 will have one less path using its facilities. We can illustrate the calculation of P(1) with

an example fault. Due to the symmetry of the cube,-any single fault we cite will be said

to be addressed at node 0.

As an example of determining 13(1), let us assume a single link failure. Let the fault

be in the mth link from node 0 (both entry and exit links). We have three possible cases

to examine the paths lost from link 1: 1 is traversed with ecube by some paths before the

faulty link, I is traversed by some paths after the faulty link, or I is the faulty link. The

key point of the above three cases is that we are trying to find all paths which cross I and

cross the faulty link under ecube routing. If I does not fall into one of these categories, it

does not lose any paths due to the faulty link, and P(1) = 0. Our notation below is similar

to that above, but we indicate the dimension of the faulty link with an arrow.

Case 1:
1=0._.Ott..tlO..0
s=0. .tt.. ilU. .U
d=u. .ut0. .000. .0 TI

Case 2:l=0..06t., tt0..0 ml

S .1 .000. .O v. .1)
d=u..lt. .tt0. .0

Case 3:
1 =0 . .010. .01
s=0. . ..u
d=u. .ut0. .0 TI1 !

I

I

I 25

U An important feature in the above cases is what can be called a run of the fault

I I address. The fault here is 0._.-0..0. It appears in all these cases as follows: we start at

the left of s; we read over to the mth bit and find all O's; the mth bit in the source is I and

in the destination is ; the rest of the bits in the destination are 0. We see that a run is

3formed where we can read from the path (s d) the faulty link.

We can do the same sort of bitwise analysis for the cases of a single fault in proces-

N • sor 0 or a fault which destroys all of node 0. To determine 13(l) from this derivation of

3 paths crossing I and the fault, we again examine the Hamming distance between the

(s d) pairs we have found. In the above example the three cases are mutually exclusive.

Given the I we are characterizing with 3(l), we need to decide which case it falls under,

I an easy task here. For Case 3, j3(1)=ct(l), since every path crossing the faulty link is lost.

We will concentrate on Cases 1 and 2; let H (s d) be the Hamming distance between s

and d for a certain assignment of the unknown bits in (s d). In Cases I and 2, H(s d)>2

3 because two links must be crossed (one is 1, and one is the faulty link). For a specific 1,

H(s d)>r, where r is 2 plus the number of bits between the dimension of I and the

dimension of the faulty link which differ between s and d. This r represents the

5 minimum k for which 13(l)t is not zero. If there are q bits free (q u's) in (s d), then

3 ~~(')k = [J9-rl

3.4.3. Calculation of Tl)

The value of a depends only on the ecube route. The value of 3 depends only on

3 the ecube route and the specific fault. The value of y, the number of paths placed on a

link because of the reroute technique, is the only number depending on reroute strategy.

I

26

Breaking down the cases for y is difficult, but not impossible for a single link or node

fault. Note that for a processor failure, where communication is still possible through the

node, no reroute takes place and y is zero. We will demonstrate the analysis of 7(1) using

a node fault, showing some of the differences between node faults and link faults.

Assume node 0 is faulty, that is, no paths may be routed through node 0. To figure

(1) we need to determine those paths (s d) that ecube routes through node 0 but our

reroute strategy routes across link 1. In this example, let the reroute strategy be C&S

adaptive [27] discussed earlier in Section 2.2. First, a number of things need to be noted

about C&S adaptive. Under a single node failure, no spare dimensions are taken by C&S

adaptive. A spare is taken only if all the dimensions yet to be resolved are faulty. There-

fore, a single fault hypercube will only force a path to take a spare dimension if the last

link to be covered is faulty. This is impossible since any path with a faulty last link

would have as its destination processor 0, which is faulty itself. In effect the C&S adap-

tive reroute method, with a single node failure at node 0, makes one modification to the

normal ecube routing method: it swaps the order a path resolves the dimensions by

which it would normally enter and exit node 0, thus bypassing node 0.

The (s d) pairs we have to find can be broken up into the following functional

cases:

Case 1: path not yet reached node 0
Case 2a: path hit 0, now resolving next highest dimension
Case 2b: path passing 0 by dimension of conflict
Case 2c: path back to normal ecube in higher dimensions

1 27

I We now discuss each case separately.

I Case 1:
1=0.. Ol t..t10. .0
s=0. .Olt. .tlu..)3 d=o. .00. .000. .0

In Case 1 we notice the run of the faulty component. The first rule in (s d) deriva-

tion is that routing by ecube must take the path (s d) through the fault. Otherwise, the

path does not require rerouting.

Case 2a:
1=0. .060..010. .0
s=0. .000. .01u. .u
d=,u. .,ulO. .000. .0

This case is for the value of I which we take in order to avoid node 0. Resolving

SI the I which appears in the link address would have made the path through node 0. We

instead must resolve the next highest bit between s and d. (Note the space of 0 bits in

both s and d.)

i Case 2b:
1=0..010. .010..0
S=0 .000. .01U. .u
d=,u. .u10. .000. .0

3 All of these cases still have the run of O's which must exist for this path to normally

have gone through node 0. In this case we have resolved the next highest bit, and now

are resolving the bit which would have otherwise carried us into node 0.

Case 2c:
1=0. .0)t..t00..0
s=0. .000. .00'U. .3 d= It .. ul..tlO. .0

U

28

Case 2c is the same as Case 1, but for a link on the other side of the faulty node.

Calculating y(1) from these cases is more difficult than calculating J(l). These

functional cases we have derived are exclusive, but they are not independent. In fact, any

link which works in Case 2b also works in Case 1, and any link which satisfies Case 2c

satisfies 2a as well. In these instances we simply add the numbers derived from each of

the two cases because no specific path which appears in one case appears in the other.

Let us use Case 1 as an example in computing y(l)k. Again, there are r bits forced

to be different between s and d because of the case and the address of link 1. We need

to choose k-r from the q unbound bits to find 7(1)k. But there is another factor to con-

sider here. There is one assignment of the qd unbound bits in d which causes d to equal

zero. "Ibis is impossible since node 0 is faulty and can source or sink no communication.

We must subtract off the number of ways that all k-r bits can be chosen from the qs free

bits of s: at least one of these k-r bits must appear in d. Thus, for an I which satisfies

Case 1 (and not Case 2b),

Getting numbers for the other cases is similar, always avoiding a faulty source or destina-

tion.

One thing which should be noted is that in all these calculations, the sum over all k

of a, 13, or y equals what we compute when we count total paths using the numbers of

unbound bits. In the above example for (1), the total number of paths (s d) which are

rerouted onto I is

* 29

~qz~i... ~ k - frjr]

3.4.4. Example application of path analysis

I As an example using all of a, 03, and y to calculate v, we look at the following case

3in a four-dimensional cube: node 0000 is faulty, the reroute is C&S adaptive, and the

link we are examining is 1 = 0011. Here for the sake of simplicity, we compress v(I) into

3 a scalar quantity, ignoring k and counting all paths the same rcgardless of their length.

1 First we look at oc(l), the number of paths on I in a perfect hypercube.

I = t..tti..t = 0011
S = t..t I.A = 9011
d = u. .utt. .t = uuio0

3 From this layout, we see that there are three unknown bits in (s d). Thus our scalar

ot(l) = 23 = 8.

I We need to create the proper layout to find 3(I). We are trying to find those paths

3 which cross I and go through node 0000. By writing 1, s, and d as in the other layouts,

we can find the paths (s d) which apply.

1 l= 001f
S = 00113 d = u0 0

Note the run of 0000 in s and d. Bit 0 goes from I to 0 in (s d) because that is precisely

the action performed by 1. Bit 1 goes from 1 to 0 because otherwise the ecube paths

1 described would not be routed through faulty node 0. Bits 2 and 3 are resolved after both

I and node 0000 and are therefore unbound in the destination. The scalar 3(I) calculated

from the above determination of the required (s d) is 13(1) = 22 = 4.

I
I

30

The link and fault combination in our example matches those for Cases 1 and 2b of

the -I) discussion above. We thus copy the layouts from above and substitute for I.

1=0..01t..1,10..0 = 0011
s=0..01t. .Ilu. .u = 0011
d=u. .u00. .000. .0 = oOO

1=0..010..010..0 = 001f
s=0..000..01U..u = 0001
d=u. .u10. .000. .0 = uu10

The contribution to "(l) of the (s d) from Case 1 is 3. One apparent (s d) path has d=0,

and it is not counted in y(l). The other three paths in Case 1 were counted as lost in cal-

culating J(l). C&S adaptive, however, would route those three across link l anyway,

taking care of rerouting them later. There are 4 paths to be added to y(l) from Case 2b.

These paths are those which start at node 0001 and want to go to or through 0010. Due

to the fault, they cannot proceed through 0000, and thus are rerouted through 0011 to

0010.

The total number of paths v(l) on link l = 001 f due to a faulty node 0000 and C&S

adaptive rerouting is

v(1) = ax(/) - 13(1) + y(l) = 8-4+(3+4)= 11

This example considered v to be scalar for ease of presentation, but the extension to the

vector v is clear and straightforward.

3.5. Program Implementation of Path Analysis

The above mathematical determination of v is only possible for a single fault in the

entire structure of the hypercube. More than one fault excessively complicates the cases

and the counting. However, we have developed and applied an algorithm which very

1 31

I simply and quickly determines v and N for any faulty condition of the hypercube net-

3 work.

The algorithm for finding the paths crossing the links is given below.

ALGORITHM FIND-PATHS
Create a graph of the degraded hypercube, identifying faulty components
For every node s

For every other node d3oTry routing (s d) by ecube
If ecube fails, try reroute strategy
If ecube and reroute strategy fail, the path fails

Endfor
Endfor

3 For each successful path, we check the links it crosses and take whatever counts we

need. Namely, we store up the routing count matrix N(l) and the vector v(l) for every 1

in the hypercube. From these counts, we can determine the arrival rate X and the delay w

3 for each link 1 as shown previously.

1 3.6. Reconfiguration Modeling

As mentioned before, our analysis models the remapping of tasks as proposed by

Banerjee [26]. Specifically, we view a task on a node as being divisible into n similar

3 processes. After a processor fails, its task is divided as similar processes among the n

neighboring nodes of that processor. These displaced processes still behave,

communication-wise, as though they were united on the now-faulty processor.

I To account for the redistribution of tasks in this fashion, only minor changes i.eed to

3 be made to the analysis we have thus far presented. This is because the communication

due to the redistributed work is merely superimposed upon the traffic already existingI
I

32

due to unaffected processors. Therefore, the traffic and delay analyses are unaffected.

We have previously handled the loss of paths due to a processor fault by subtracting the

appropriate contributions from v and N; for v the term for lost paths was 3. Similarly,

we can model task redistribution with appropriate additions to v and N.

Consider vR and NR. These are analogous to v and N, but consist exclusively of

traffic due to task redistribution. As discussed above, we look at all the paths (s d)

which cross a link 1. If the s or d determined to be an endpoint of a path is adjacent to a

faulty processor, that path carries traffic from a displaced process. We account for this

appropriately in VR and NR.

We will describe the formulation of vR (1); the extensions of this to NR (1) are

straightforward, essentially recognizing and recording the order of links in each path.

Recall that v(l)t holds the number of paths of distance k crossing link 1. vR (I)k carries

the number of virtual paths of length k crossing link 1 due exclusively to task

reconfiguration. Since each displaced process is 1/n of the standard processor task, we

assume it sources and sinks 1/n times the number of messages a standard processor

would. If we find that (s d) carries traffic for a displaced process across 1, we add l/n to

the appropriate element of VR (1). The appropriate element k is not determined from the

distance between s and d, as it is in v(l). The correct k in vR (1) is the distance between

the original source and destination, that is, k is calculated as though the displaced process

is not displaced. In this way we preserve the original destination distribution intended by

the application program while still considering the remapping of tasks from faulty com-

putational units.

I
I I I II I I II IU

1 33

I As we have presented the task redistribution theory, we ignore certain second-order

3 effects. Among these is the failure of two adjacent processors. Also, we do not account

for the traffic due to communication which may be required among processes displaced

I from the same node. The latter of these could easily be modeled by including a N'o which

describes the amount of communication among processes on one processor. When these

processes are displaced, they still must communicate, but now across links instead of

through memory. These effects we can include in vR (1) and NR (1), although we have

3 not included these in our implementation because of the specific nature of VO.

By adding vR (1) to v(l) and NR (1) to N(I), we can proceed with the analyses of

traffic and delay as presented previously in this thesis.

I,

I"

I
I
I
I
I

U

34

CHAPTER 4.

COMPARISON OF PATH ANALYSIS WITH SIMULATION

We have written a program which implements Path Analysis using algorithm

FINDPATHS described above. We compared the results given by the Path Analysis

program with those given by simulation. For simulation we used the CSIM simulation

environment [33]. In the simulation we chose each source to have an identical exponen-

tial intermessage frequency of mean 7,* and each link to have an identical exponential

service time mean 1. Thus the times we observe are in units of average message

transmission time. Traffic is in units of number of messages per mean transmission time,

and delay is in units of mean transmission time.

We show results for a four-dimensional fault-free hypercube (F0) and a four-

dimensional hypercube (F4) with four faults: node 0000, node 0011, link 1-01, and link

-110. For each of these, we display graphs for a uniform destination distribution and a

sphere of locality (r=l and O=.9) distribution. Figure 2 shows F0 under uniform distribu-

tion, Figure 3 shows F0 under spherical distribution, Figure 4 shows F4 under uniform

distribution, and Figure 5 shows F4 under spherical distribution. Each figure is a quaitet

of graphs displaying theoretical and simulation results for traffic and delay for the vari-

ous links. The 64 links are grouped by dimension with the lower dimensions to the left.

I

1 35
!

Theoretical Theoretical
Traffic Delay

0.15 1.

1 0.1 1

0.05- 0.5-

0 0

1 0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Simulated Simulated
Traffic Delay

0.15-
1.5-I

0.1 1I
10.05 0.5-

I 0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)I

I
Figure 2. Path Analysis Compared with Simulation:3Fault-Free Hypercube, Uniform Destination Distribution

3

36

Theoretical Theoretical
Traffic Delay

0.1-

0.08-

0.06-

0.04- 0.5-

0.02-

0- 0-
0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Simulated Simulated
Traffic Delay

0.1

0.08 1

0.06-

0.04- 0.5-

0.02-

0 0

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Figure 3. Path Analysis Compared with Simulation:
Fault-Free Hypercube, Sphere of Locality Destination Distribution

I

1 37
I

3 Theoretical Theoretical

Traffic Delay

0.2-
2

0.151
* 1.5-

1 0.1 1

0.05- 0.5'

1- . - - - 0 . .
0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

ISimulated Simulated

Traffic Delay

3 0.2-
2-

1 0.15-1. 1.5-

0.1- 1 -

0.05 0.5-

0 0 IIIII IIIIII 11 1 11111 11

1 0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

I

Figure 4. Path Analysis Compared with Simulation:
Four-Fault Hypercube, Uniform Destination Distribution

I

38

Theoretical Theoretical

Traffic Delay

0.1-

0.05 0.5-

0 0

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Simulated Simulated

Traffic Delay

0.1- 1

0.05- 0.5-

0- 0- A11111M
- r-- I--. - " I - - "J -

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Figure 5. Path Analysis Compared with Simulation:
Four-Fault Hypercube, Sphere of Locality Destination Distribution

I

1 39

I The graphs show us that the theoretical estimate of the traffic, or throughput as

3 CSIM calls it, is essentially exact for all cases. We expect this similarity because there

are no approximations made in our analysis of traffic. The only deviation from reality

U here is the probabilistic characterization of destination.

3The accuracy of delay, however, varies dramatically. The first fact we should note

is that our model gives much better delay results for a sphere of locality distribution than

for a uniform distribution. The effects which cause the simulated system to deviate from

3 our delay model are lengthy paths. The more single-hop messages in the system, the

more exponential the arrivals and the waits for link service become. Since a dominance

of single-hop paths is common in hypercube applications, we consider the model's accu-

3 racy in predicting these delays to be very valuable.

We can see from the graph of the perfect cube with uniform destination distribution

in Figure 2 that the approximation for delay grows worse from higher dimensions to

3 lower dimensions. The weakest part of the theoretical delay calculations is that of the

delay from the utilization. Since a higher dimension link in a perfect hypercube does not

have to incorporate into its own utilization the delay experienced in later links, it has a

3 more accurate theoretical delay than a lower dimension link. That the delay is as errone-

ous as it is for the highest dimension links is a testament to the inaccuracy of the assump-

tions. By the time messages have made their way from the lower links to the highest,

1 their arrival is hardly exponential. These effects, as well as assuming the general service

distributions to be exponential, cause the theoretical model to consistently overestimate

the simulated results for delay.

3
3

40

We have provided Table 1 for quantitatively comparing theoretical and simulated

delay results for the four cases. We give average delay over all the usable links for both

theoretical and simulated runs, as well as the percentage deviation of theoretical from

simulated results. We see that the model is very close to the simulated results for the

sphere of locality destination distribution. It is also evident that the delay model has

some difficulty dealing with uniform V in the highly faulty network, although the approx-

imation for sphere of locality is still very good.

The value of Path Analysis is clear when we see that it gives the correct traffic esti-

mation, regardless of assumed intermessage frequency distribution or service time distri-

bution. Although the delay is overestimated in our model, slightly or greatly depending

on destination distribution, it is consistently overestimated and correctly reflects the

profile of the actual delay. We can use the program's exact traffic calculations to recog-

nize which links saturate first under different degraded configurations, and we can see

how badly assorted faults increase the message delay for faulty hypercubes with reroute

strategies.

Table 1. Comparison of Theoretical and Simulation Results.

Average Link Delay
Dest. Dist. Configuration Theory Simulation %difference

uniform no faults 1.3324 1.2073 +10.36
uniform 4 faults 1.5834 1.2609 +25.58
sphere no faults 1.0912 1.0919 -0.06
sphere 4 faults 1.1204 1.1065 +1.26

I

S41
i Of course, the most important feature of the Path Analysis program is that it is fast,

3 much faster than the simulations we ran. The actual difference in execution time was

quite variable in our tests, but the runs of the Path Analysis program were generally well

i over 100 times as fast as our simulations. The program can be a valuable, real-time aid

3 in the analysis and design of hypercube systems and techniques. In the next chapter we

use the Path Analysis program to analyze the effectiveness of reroute methods.

I
I

I
I,

I
I

I

I

42

CHAPTER 5.

RESULTS OF PATH ANALYSIS

Now we present results for performance degradation as determined from our Path

Analysis program. In Table 2, we show the success rates of the different reroute stra-

tegies under various hypercube configurations. Since the Path Analysis program

develops each path according to the FINDPATHS algorithm, we can easily determine

success and failure of the individual paths. The success rate of each reroute strategy is

given for a number of different faulty conditions Fi of the hypercube. Fi contains i

faulty links and/or nodes. Beneath each Fi we give the number of viable paths in that

configuration. We call viable paths those paths which are from fault-free source to

fault-free destination processors.

From this table, we can see that the table-routing methods [26], as expected, have

the best success rate. Second best is C&S adaptive [27], but unreflected in this table is

Table 2. Success Rates for Various Reroute Strategies.

Reroute F2 F3 F4 F5 F6
Strategy (210) (240) (182) (182) (132)

none 178 194 125 111 86
C&S adaptive 210 240 182 175 132
hyperswitch 206 232 168 146 122
hig.'ifirst 205 228 166 147 112
reverse 206 226 162 146 110
table-centralized 210 240 182 182 132
table-distributed 210 240 182 182 132

I

* 43

U the fact that C&S adaptive has a much greater average path length than the table-routing

3 methods. Hyperswitch [111 is noticeably less successful than the above three, mostly due

to its restriction to distance-length paths. Another item we notice is that hyperswitch is

U not overwhelmingly more successful than highfirst or reverse. As a fault-tolerance meas-

ure, hyperswitch may not be worth the extra expense. However, in this analysis we do

not examine hyperswitch's powerful congestion-avoiding capabilities. All the rerouting

U strategies show noticeable improvement in success over no reroute, giving evidence that

3 rerouting is a valuable feature in a hypercube system. However, success data is only a

part of Path Analysis. The real contribution of PA is its traffic and delay results.

U We now present graphs of traffic as provided by Path Analysis for different faulty

3 hypercubes. We can examine profiles of traffic on the links to evaluate the actual amount

of traffic and the even distribution of traffic. In each figure we present traffic for the six

U different hypercube reroute strategies we have investigated. Figure 6 shows a node fault

3 at 0000 with no task reconfiguration, Figure 7 shows a node fault at 0000 with modeled

task reconfiguration, Figure 8 shows a link fault at -000, and Figure 9 shows the four-

I fault case we used in the previous chapter (F4 above). All these graphs are for uniform

3 destination distributions because these are more likely to bring out differences between

reroute strategies.

These traffic profiles of the six reroute strategies show marked differences between

I them. However, we must remember when comparing traffic numbers that, for each link

fault, hyperswitch, highfirst, and reverse automatically fail for two paths. The graphs of

the four-fault case should be analyzed with column F4 of the preceding Table 2 in mind.

I
I

44

C&S Adaptive Hyperswitch
Traffic Traffic
0.2- 0.2-

0.15- 0.15-

0.1 0.1

0.05- 0.05-

0 - , 0 1 M l I

0 1 2 3 0 1 2 3
Links (grout -d by dimension) Links (grouped by dimension)

Highfirst Reverse
Traffic Traffic
0.2- 0.2

0.15- 0.15-

0.1- 0.1

0.05 0.05 -

0- 0
0 1 2 3 0 1 2 3

Links (grouped by dimension) Links (grouped by dimension)

Table-Centralized Table-Distributed
Traffic Traffic
0.2- 0.2

0.15- 0.15-

0.1- 0.1-

0.05- 0.05-

00-

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

Figure 6. Path Analysis Results: Fault at Node 0000, Task Disappears

1 45U
C&S Adaptive Hyperswitch

Traffic Traffic
0.2- 0.2-

0.15 0.15-

0.1- 0.1-

U0.05- 0.05-

0 0
0 1 2 3 0 1 2 3

Links (grouved by dimension) Links (grouped by dimension)

3 Highfirst Reverse
Traffic Traffic
0.2- 0.2

0.15- 0.15-

0.1 0.1

0.05- 0.05-0 0 -° 1111111-1
3 Links (grouped by dimension) Links (grouped by dimension)

Table-Centralized Table-Distributed
Traffic TrafficIl
0.2- 0.2-

0 0.15- 0.15-

0.1- 0.1-

1 0.05- 0.05

0 0
0 1 2 3 0 1 2 3

Links (grouped by dimension) Links (grouped by dimension)

F
i Figure 7. Path Analysis Results: Fault at Node 0000, Task Redistributed

U

46

C&S Adaptive Hyperswitch
Traffic Traffic
0.25- 0.25

0.2- 0.2-

0.15- 0.15-

0.1- 0.1-

0.05- 0.05-

0- 0-
0 1 2 3 0 1 2 3

Links (grouped by dimension) Links (grouped by dimension)

Highfirst Reverse
Traffic Traffic
0.25- 0.25

0.2- 0.2-

0.15- 0.15-

0.1 0.1-

0.05 0.05-

0 0-
0 1 2 3 0 1 2 3

Links (grouped by dimension) Links (grouped by dimension)

Table-Centralized Table-Distributed
Traffic Traffic
0.25- 0.25-

0.2- 0.2-

0.15- 0.15-

0.1- 0.1-

0.05- 0.05-

0- 0-
0 1 2 3 0 1 2 3

Links (grouped by dimension) Links (grouped by dimension)

Figure 8. Path Analysis Results: Fault at Link -000

I

1 47

1 C&S Adaptive Hyperswitch
Traffic Traffic30.25- 0.25-

0.2- 0.2

0.15- 0.15

0.1- 0.1-

30.05 -0.05-
0 0-

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

T Highfirst Reverse
Traffic Traffic

0.25 0.25-

0.2 0.2

0.1 0.1

0.05 0.05 -
*0 02

0 1 2 3 0 1 2 33 Links (grouped by dimension) Links (grouped by dimension)

Table-Centralized Table-Distributed

Traffic Traffic

0.25- 0.25-

1 0.2 0.2
0.15- 0.15-10.1- 0.1-
0.05 0.05-

0- -fl I 111L I " II M I I

0 1 2 3 0 1 2 3
Links (grouped by dimension) Links (grouped by dimension)

F
I Figure 9. Path Analysis Results: Four-Fault Hypercube

3

48

There are interesting observations to be made from each of the figures. For

instance, from Figure 6 it is clear that hyperswitch is best at equalizing the traffic across

the links after a node fault has occurred. All the other strategies move the traffic lost

from one link in a dimension to some other link in that dimension, leaving the distribu-

tion uneven.

Figure 7 demonstrates the greater unevenness in link traffic due to task redistribu-

tion. The basic quantitative effect of task redistribution under our model is evident in the

difference between the hyperswitch graphs in this and the previous figures. The amount

of added traffic strongly suggests that the modeling of task reconfiguration is an impor-

tant factor in determining link traffic.

Figure 8 shows the differences among the reroute strategies when confronted with a

link fault in the highest dimension. The regularity of highfirst is interesting. The

highfirst traffic appears this way because sources evenly distributed throughout the

hypercube know that their ecube paths will fail at link -000; each source compensates by

taking another highest dimension link first, thus evenly distributing the traffic from -000

on these highest dimension links and not changing the traffic amounts on lower dimen-

sion links. We also note the large traffic amounts on certain links for C&S adaptive.

This great unevenness is due to the fact that C&S adaptive has no lookahead; any mes-

sage that has made its way to the third dimension link only to find it faulty must take a

spare dimension, adding two to its path length.

Figure 9 shows the traffic in a four-fault hypercube, where the faults are at node

0000, node 0011, link 1-01, and link -110. Again recall that hyperswitch, highfirst, and

i I I II

U

S49
U reverse fail for a number of paths, and the traffic from these paths consequently does not

3 appear on the graphs. Comparing the other three reroute strategies, we note that C&S

adaptive gives greater total network traffic due to its greater average path length. The

i table-routing methods show less traffic than C&S adaptive because of their optimal

3 length paths.

We can similarly produce graphs of delay from Path Analysis results. Together

with success ratios and other incidental path information, traffic and delay can aid us in

3 analyzing the condition of a faulty hypercube and the capabilities of various reroute stra-

tegies to handle it.

I
I

I,

I
l
U
i
i

50

CHAPTER 6.

CONCLUSIONS

We have presented Path Analysis, a technique for calculating traffic on each of the

many links of a hypercube. This analysis also provides delay in both packet-switched

and the more current circuit-switched networks. Although a thorough comparison of

reroute strategies is beyond the scope of this thesis, we have developed methods and

tools which make such a comparison possible.

Path Analysis can also be extended to other network topologies with deterministic

routing strategies. Arbitrary destination distributions are easily applied, and distributions

from application program traces may be used. In fact, a program gathering paths with a

variant of algorithm FINDPATHS could give each (s d) combination a precise traffic

number derived from traces, ignoring the assumptions of uniform message sourcing and a

destination distribution described by distance. Using extensions of the ideas in this

thesis, the program could calculate link traffic and delay for these specific application

traces.

I s

I
REFERENCESI

I [1] T.-y. Feng, "A survey of interconnection networks," IEEE Computer, pp. 12-27,
December 1981.

[21 D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-Passing
Parallel Processing. Cambridge, MA: MIT Press, 1987.

(3] D. A. Rennels, "Fault tolerant computing - concepts and examples," IEEE
I Transactions on Computers, vol. C-33, pp. 1116-1129, Dec. 1984.

[4] J. P. Hayes, "A graph model for fault-tolerant computing systems," IEEE3 Transactions on Computers, vol. C-25, pp. 86-88, Jan. 1976.

[5] D. K. Pradhan, "Fault-tolerant multiprocessor link and bus network
architectures," IEEE Transactions on Computers, vol. C-34, pp. 33-45, Jan.
1985.

[6] J. P. Hayes, T. N. Mudge, Q. T. Stout, S. Colley, and J. Palmer, "Architecture of
a hypercube supercomputer," Proc. 1986 Int. Conf. Parallel Processing, pp.
653-660, Aug. 1986.

[7] Intel Scientific Computers, "iPSC: The First Family of Concurrent
Supercomputers," 1985, product description.

[8] J. Tuazon, J. Peterson, M. Pniel, and D. Leberman, "Caltech/JPL Mark II
hybercube concurrent processor," Proc. 1985 Int. Conf. Parallel Processing, pp.

S666-673, Aug. 1985.

[9] J. C. Peterson, J. Tuazon, D. Lieberman, and M. Pniel, "The Mark III
hypercube-ensemble concurrent computer," Proc. 1985 Int. Conf. Parallel3 Processing, pp. 71-73, Aug. 1985.

[10] S. F. Nugent, "The iPSC/2 direct-connect communications technology," Proc.
3rd Conf. Hypercube Concurrent Computers and Applications, Jan. 1988.

[11] E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed, "Hyperswitch
network for the hypercube computer," Proc. 15th Int. Symp. Computer
Architecture, pp. 90-99, May 1988.

[12] D. A. Rennels, "On implementing fault tolerance in binary hypercubes," Proc.
16th Int. Symp. Fault-Tolerant Computing, pp. 344-349, July 1986.

[13] S. Dutt and J. P. Hayes, "An automorphic approach to the design of fault-tolerant
multiprocessors," Proc. 19th Int. Symp. Fault-Tolerant Computing, pp. 496-503,

I June 1989.

I
I

52

[14] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. S. Nair, K. Roy, and J. A. Abraham,
"An evaluation of system-level fault tolerance on the Intel hypercube
multiprocessor," Proc. 18th Int. Symp. Fault-Tolerant Computing, pp. 362-367,
Jun. 1988.

[15] C. Aykanat and F. Ozguner, "A concurrent error detecting conjugate gradient
algorithm on a hypercube multiprocessor," Proc. 17th Int. Symp. Fault-Tolerant
Computing, pp. 204-209, July 1987.

[16] B. Becker and H. U. Simon, "How robust is the n-Cube?," Proc. 27th Symp.
Foundations Computer Science, pp. 283-29 1, Oct. 1986.

[17] N. Graham, F. Harary, M. Liuingston, and Q. Stout, "Subcube fault tolerance in
hypercubes," Comp. Res. Lab. Tech. Report CRL-TR-12-87, University of
Michigan, Sep. 1987.

[18] C. C. Li and W. K. Fuchs, "Graceful degradation on hypercube multiprocessors
using data redistribution," 1989 Int. Conf. Parallel Processing, Aug. 1989,
(submitted).

[19] M. U. Uyar and A. P. Reeves, "Fault reconfiguration for the near neighbor
problem in a distributed MIMD environment," Proc. 5th Int. Conf. Distributed
Computing Systems, pp. 372-379, May 1985.

[20] S. H. Bokhari, "Partitioning problems in parallel, pipelined, and distributed
computing," IEEE Transactions on Computers, vol. C-37, pp. 48-57, January
1988.

[21] G. Chuanshan, J. W. S. Liu, and M. Railey, "Load balancing algorithms in
homogeneous distributed systems," 1984 Int. Conf. Parallel Processing, pp.
302-306, Aug. 1984.

[22] A. K. Ezzat, R.-D. Bergeron, and J. L. Pokoski, "Task allocation heuristics for
distributed computing systems," Proc. 6th Int. Conf. Distributed Computing
Systems, pp. 337-346, May 1986.

[23] V. B. Gylys and J. A. Edwards, "Optimal partitioning of workload for distributed
systems," Digest of Papers COMPCON, pp. 353-357, Fall 1976.

[24] J. Hastad, T. Leighton, and M. Newman, "Reconfiguring a hypercube in the
presence of faults," Proc. 19th ACM Symp. Theory of Computing, pp. 274-284,
198/.

[25] G. C. Fox and J. G. Koller, "A dynamic load balancer on the Intel hypercube,"
Proc. 3rd Conf. Hypercube Concurrent Computers and Applications, Jan. 1988.

[26] P. Banerjee, "Reconfiguring a hypercube in the presence of faults," Proc. 4th
Conf. Hypercube Concurrent Computers and Applications, Mar. 1989.

[27] M. S. Chen and K. G. Shin, "Message routing in an injured hypercube," Proc.
3rd Conf. Hypercube Concurrent Computers and Applications, pp. 312-317, Jan.
1988.

i

I 53

1 [28] T. C. Lee and J. P. Hayes, "Routing and broadcasting in faulty hypercube
computers," Proc. 3rd Conf. Hypercube Concurrent Computers and3 Applications, pp. 346-354, Jan. 1988.

[29] J. M. Gordon and Q. F. Stout, "Hypercube message routing in the presence of
faults," Proc. 3rd Conf. Hypercube Concurrent Computers and Applications, pp.
318-327, Jan. 1988.

[30] H. Sullivan and T. R. Bashkow, "A large scale homogeneous fully distributed
parallel machine," Proc. 4th Symp. Computer Architecture, pp. 105-117, Mar.
1977.

[31] L. Kleinrock, Queueing Systems, Vol. H. New York, NY: John Wiley and Sons,
Inc., 1975.

[32] K. S. Trivedi, Probability and Statistics with Reliability, Queueing and Computer
Science Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982.

[33] H. D. Schwetman, "CSIM: A C-based, process-oriented simulation language,"
Tech. Report PP-080-85, Austin, Texas, 1985.

,I
I

I
II
I
I
I
I

